

rpr-IoT-AT01 User Manual Indoor Ambient Temperature Node

Issue 1

029SL033_1

Please check that you have the latest version of this manual by visiting r-p-r.co.uk

© 2023 Richard Paul Russell Ltd. Page **1** of **15** 029SL033_01

rpr-IoT-AT01 User Manual

1 Contents

1	C	Contents	2		
2	Table of Figures				
3	D	Document History	3		
4	D	Description	4		
5		Application Example			
6	G	Getting started	5		
	6.1	Gateways	5		
	6.2				
	6.3	S Login to the rpr-IoT dashboard	6		
	6.4	Create a Group	6		
	6.5	Claim a Device	7		
	6.6	6 Create a Dashboard	7		
7	Ν	Message interval	8		
8 Temperature Sensor Identification					
9 Battery state indicator					
1()	Replacing the battery	<u>c</u>		
1:	1	Adding the Dashboard to the Home Screen on an Android device	10		
12	2	Glossary	11		
13	3	Specification	11		
14	4	Appendix	13		
	A1	UK DECLARATION OF CONFORMITY	13		
	A2	CE Declaration of Conformity	14		
	Α3	WFFF	15		

2 Table of Figures

Figure 1 Application Example	4
Figure 2 Inside of node showing position of plastic shim	
Figure 3 Battery	
Figure 4 Dimensions	

3 Document History

Issue	Notes	Date
01	Original version	April 2023

Our products are in continuous development and therefore this manual and specifications may be subject to change and design improvements may be implemented without prior notice. Please visit our web site www.r-p-r.co.uk for the most up to date information on our products.

© 2023 Richard Paul Russell Ltd. Page **3** of **15** 029SL033_01

4 Description

The rpr-IoT-ATO1 remote temperature sensor node can be used in a wide range of indoor temperature monitoring applications. Data is sent from the node using low power, long range radio compatible with LoRaWAN and The Things Network to one or more LoRaWAN gateways where it is forwarded to the rpr-IoT Cloud for storage and access by the rpr-IoT dashboard. The dashboard allows data from several nodes to be plotted and displayed in a flexible manner to suit the application.

5 Application Example

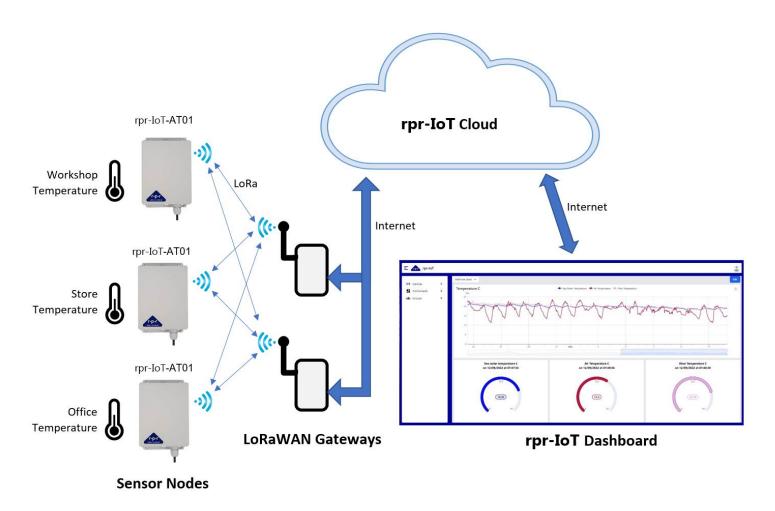


Figure 1 Application Example

© 2023 Richard Paul Russell Ltd. Page **4** of **15** 029SL033_01

6 Getting started

6.1 Gateways

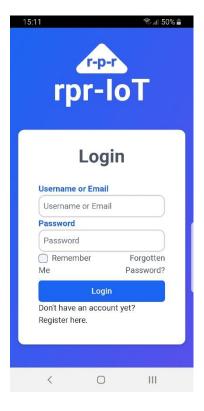
The rpr-IoT-ATO1 has been designed to be simple to use but first you should check or arrange that there is a suitable gateway within range. The locations of gateways can be seen on the map at https://ttnmapper.org/heatmap/

If you are setting up your own gateway there is information on this at https://www.thethingsindustries.com/docs/gateways/

6.2 Activate the node.

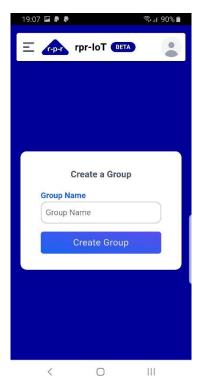
The rpr-IoT-ATO1 has been pre-configured to join the Things Network when the power is connected by removing the shim to connect the battery. The LED will flash while it is attempting to join the network.

Figure 2 Inside of node showing position of plastic shim.


After power has been connected if there are no gateways within range the node will have repeated attempts to send data but lengthen the time between successive attempts.

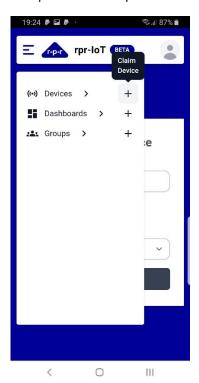
© 2023 Richard Paul Russell Ltd. Page **5** of **15** 029SL033_01

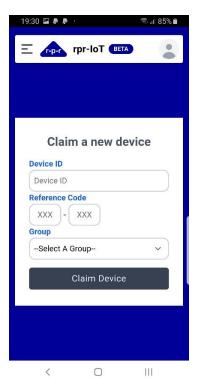
6.3 Login to the rpr-IoT dashboard


Go to rpriot.com and follow the link to the dashboard at the top of the page or scan the QR code that came with your node. If you do not have an account, then register by following the link at the bottom of the Login screen.

6.4 Create a Group

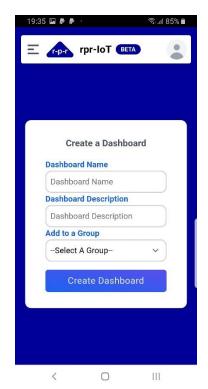
If you have already created a Group, then you can skip this and go straight to Claiming a device.




© 2023 Richard Paul Russell Ltd. Page **6** of **15** 029SL033_01

6.5 Claim a Device

Enter the 16-character Device ID (EUI) and the 6-character Reference Code that came with your node. Select a Group from the dropdown menu and click the Claim Device button.



6.6 Create a Dashboard

Once a dashboard has been created graphs and gauges can be added to it by selecting the dashboard and clicking the Edit button.

© 2023 Richard Paul Russell Ltd. Page **7** of **15** 029SL033_01

7 Message interval

The rpr-IoT-T01 will adhere to the Things Network's public community network fair use policy and adjust the minimum uplink message interval depending on the Data rate / Spreading Factor as shown in the following table:

Data	Spreading	Minimum up	
rate	factor	message interval	
DR5	SF7	3 minutes	
DR4	SF8	6 minutes	
DR3	SF9	10 minutes	
DR2	SF10	20 minutes	
DR1	SF11	45 minutes	
DR0	SF12	90 minutes	

The spreading factor is determined by the Adaptive Data Rate (ADR) mechanism implemented in The Things Stack which is based on the signal to noise ratio (snr) of the received signal. When first switched on the node will join with a spreading factor of 12. By default, the minimum uplink message interval is 5 minutes. To optimise battery usage this can be set to a longer value. It is not recommended that the node be used in mobile applications where the ADR mechanism may not be able to cope with rapidly or continuous changes in radio channel attenuation and signal to noise levels.

8 Temperature Sensor Identification

The temperature sensor has a unique 64-bit serial code which can be seen on the rpr-IoT dashboard under device information as an eight-character hexadecimal value followed by four zeros. The serial code is sent as the first data message after the node is powered on.

9 Battery state indicator

The temperature node outputs a value indicate the state of the battery which can be displayed on the dashboard. This is not the battery voltage but a temperature compensated value between 0 and 15 which gives a better indication of the state of the battery.

© 2023 Richard Paul Russell Ltd. Page **8** of **15** 029SL033_01

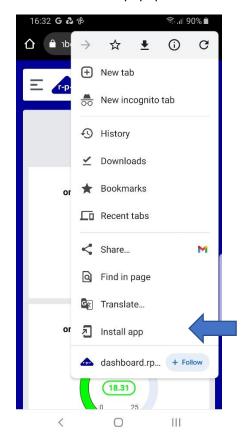
10 Replacing the battery

The state of the battery, on a scale 0 to 15 is one of the parameters sent to the dashboard and can be monitored by the user. The node uses a 3.6V 'A' size Lithium Thionyl Chloride (LiSOCI2) battery. The following table gives details of some compatible batteries.

Make	Part No.
Saft	LS17500
EVE	ER17505
RS-PRO	183-5726

Battery replacement should only be done in dry indoors conditions. The inside of the node is accessed by undoing the four screws on the back of the unit. If there is a retaining cable tie this will need to be cut before removing the battery (see Figure 3). If the unit is likely to be subjected to any vibration or shock, it is recommended that a new cable tie is fitted after the new battery is inserted.

Note: Batteries must not be recharged, crushed, disassembled, heated above 85°C, incinerated, or the contents exposed to water.


Figure 3 Battery

© 2023 Richard Paul Russell Ltd. Page **9** of **15** 029SL033_01

11 Adding the Dashboard to the Home Screen on an Android device

Using Chrome go to your dashboard and login. Using the menu at the top of the screen by the tab number select Install app and confirm Install in the popup.

Your dashboard can now be opened by selecting the icon.

The advantage of doing this apart from ease of access to your dashboard is that more of the screen is used as the address bar is no longer displayed.

© 2023 Richard Paul Russell Ltd. Page **10** of **15** 029SL033_01

12 Glossary

ADR	Adaptive Data Rate. The Adaptive Data Rate mechanism is used to control the Spreading Factor (SF)		
DR	Data Rate		
Device ID	A unique 64-bit value that is used to identify a node or device. Normally writter 16 Hexadecimal characters. It can be found on the devices serial number label.		
EUI	Extended Unique Identifier is the same as the Device ID.		
Frame Count	Value that is incremented each time the node sends a message		
Gateway	A Gateway receives LoRa messages from end devices and forward them to the Network Server using the internet. Messages can also be sent from the Network though the Gateway to the end device.		
LoRa	LoRa is a wireless modulation technique that encodes information on radio waves using chirp pulses. It is robust against disturbances and can be received over great distances.		
LoRaWAN	LoRaWAN is a Media Access Control (MAC) layer protocol built on top of LoRa modulation. It is a software layer which defines how devices use the LoRa hardware, for example when they transmit, and the format of messages.		
RSSI	Received Signal Strength Indicator		
SF	Spreading Factor. The SF indicates the speed of data transmission. A larger SF increases the time on air, which increases energy consumption, reduces the data rate, and improves communication range. The Adaptive Data Rate (ADR) mechanism adjusts the SF between 7 and 12.		
SNR	Signal to Noise Ratio		

13 Specification

Physical		
Enclosure dimensions including	146mm x 96mm x 38mm	
flanges but excluding sensor		
Mounting holes	4 off 3.5mm dia. Countersunk, 134.2mm x 69.8mm	
Mounting slots	2 off 11.5mm x 3mm slot, 134.2mm spacing	
Flange thickness	3 mm	
Enclosure material	ABS Plastic, Light Gray	
Enclosure flammability rating	UL94 V-0	
Weight	180g	
Temperature Sensor		
Sensor type	DS18B20 digital	
Sensor Accuracy	±0.5°C Accuracy from -10°C to +85°C	
	±1°C Accuracy from -30°C to +100°C	
Resolution	0.1°C	
Usable Sensor temperature range	-10°C to +60°C	
Sensor Identification	Each sensor has a unique 64-bit serial code	
Time constant	TBD	
Sample rate	1 per second to 1 per 12 hours	
Wireless/network Connectivity		
Frequency band	863-870 MHz	
LoRa Channel	EU868	

© 2023 Richard Paul Russell Ltd. Page **11** of **15** 029SL033_01

Networking Protocol	LoRaWAN, Class A	
LoRaWAN End-Device Type	Over-the-Air (OTA) activated	
Aerial	Internal Meandering Monopole circuit board mounted	
Uplink Message Interval	By default, the interval is dependent on the Spreading	
	Factor and The Things Network's public community	
	network Fair Use Policy.	
Range	Up to 10km Line of sight dependent on environment	
Power		
Battery type	A size Lithium Thionyl Chloride (LiSOCI2)	
Nominal Battery Capacity	4000mAh	
Nominal Battery Voltage	3.6V	
Environmental		
Temperature range	Operating: -10°C to +60°C, Storage: -40°C to +70°C	
Relative Humidity 0% to 100% (non-condensing)		
Enclosure protection	IP54	
Compliance UKCA, CE		

The manufacturer reserves the right to amend the specification and therefore the information in this document may be subject to change.

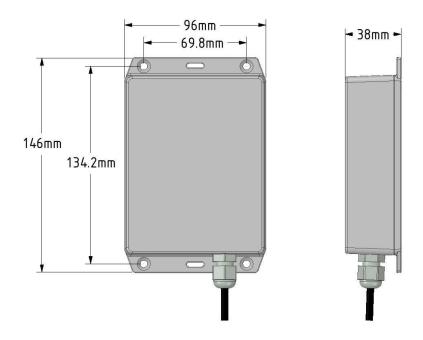


Figure 4 Dimensions

© 2023 Richard Paul Russell Ltd. Page **12** of **15** 029SL033_01

14 Appendix

A1 UK DECLARATION OF CONFORMITY

We, Richard Paul Russell Limited of The Lodge, Unit 1 Barnes Farm Business Park Barnes Lane Milford-on-Sea Hampshire SO41 0AP United Kingdom

Declare under our sole responsibility that the product: rpr-IoT

Manufactured by: Richard Paul Russell Limited to which this declaration relates, is in conformity with the Radio Equipment Regulations 2017 S.I. 2017:1206

This Declaration of Conformity is based upon compliance of the product with the following harmonised standards:

Emissions	Radiated emissions	ETSI EN 301 489-	CISPR 32:2015
	(30 MHz to 6.0 GHz)	1:V2.2.0:2017	
		ETSI EN 301 489-	
		3:V2.1.1:2019	
Immunity	Electrostatic Discharge		EN 61000-4-2:2009
	Radiated RF Immunity		EN 61000-4-3:2006
		ETSI EN 301 489-	incl A1:2008 & A2:2010
	Fast transient Bursts	1:V2.2.0:2017	EN 61000-4-4:2012
	Conducted Immunity	ETSI EN 301 489-	EN 61000-4-6:2014
		3:V2.1.1:2019	
Radio	EN 300 220-2:V3.2.1 (2018-06)		
WEEE	The Waste Electrical and Electronic Equipment Regulations 2013 (as amended)		
RoHS	The Restriction of the Use of Certain Hazardous Substances in Electrical and		
	Electronic Equipment Regulations 2012 (as amended)		

Signed by:

R.P.Russell

Richard Paul Russell - Director

Date of Issue: 01 January 2021

Place of Issue:

The Lodge, Unit 1 Barnes Farm Business Park

Barnes Lane Milford-on-Sea Hampshire SO41 0AP United Kingdom

© 2023 Richard Paul Russell Ltd. Page **13** of **15** 029SL033_01

A2 CE Declaration of Conformity

EC DECLARATION OF CONFORMITY

ACCORDING TO COUNCIL DIRECTIVE 2014/30/EC

We, Richard Paul Russell Limited of The Lodge, Unit 1 Barnes Farm Business Park Barnes Lane Milford-on-Sea Hampshire SO41 0AP United Kingdom

Declare under our sole responsibility that the product: rpr-loT

Manufactured by: Richard Paul Russell Limited to which this declaration relates, is in conformity with the protection requirements of the Radio Equipment Directive 2014/53/EU

This Declaration of Conformity is based upon compliance of the product with the following harmonised standards:

Emissions	Radiated emissions	ETSI EN 301 489-1:V2.2.0:2017	CISPR 32:2015	
	(30 MHz to 6.0 GHz)	ETSI EN 301 489-3:V2.1.1:2019		
Immunity	Electrostatic Discharge		EN 61000-4-2:2009	
	Radiated RF Immunity	ETSI EN 301 489-1:V2.2.0:2017	EN 61000-4-3:2006	
		ETSI EN 301 489-3:V2.1.1:2019	incl A1:2008 & A2:2010	
	Fast transient Bursts		EN 61000-4-4:2012	
	Conducted Immunity		EN 61000-4-6:2014	
Radio	EN 300 220-2:V3.2.1 (2018-06)			
WEEE	The Waste Electrical and Electronic Equipment Regulations 2013 (as amended)			
RoHS	The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic			
	Equipment Regulations 2012 (as amended)			

Signed by:

R.P.Russell

Richard Paul Russell - Director

Date of Issue: 17 January 2020

Place of Issue:

The Lodge, Unit 1 Barnes Farm Business Park

Barnes Lane Milford-on-Sea Hampshire SO41 0AP United Kingdom

© 2023 Richard Paul Russell Ltd. Page **14** of **15** 029SL033_01

A3 WEEE

The WEEE directive places an obligation on all EU-based manufacturers and importers to take-back electronic products at the end of their useful life. Richard Paul Russell Ltd accepts its responsibility to finance the cost of treatment and recovery of redundant WEEE in accordance with the specific WEEE recycling requirements.

This symbol on the product or on its packaging indicates that, within the EU, the product must NOT be disposed of with normal household waste. Instead, it is the end user's responsibility to dispose of their waste equipment by arranging to return it to a designated collection point for the recycling of WEEE. By separating and recycling waste equipment at the time of disposal, natural resources will be conserved and it will be ensured that the equipment is recycled in a manner that protects human health and the environment. For more information about where you can send your waste equipment for recycling, please contact your local council office or visit our website www.r-p-r.co.uk.

© 2023 Richard Paul Russell Ltd. Page **15** of **15** 029SL033_01